Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
China Tropical Medicine ; 22(8):780-785, 2022.
Article in Chinese | EMBASE | ID: covidwho-2326521

ABSTRACT

Objective To analyze the epidemiological characteristics of community transmission of the coronavirus disease 2019 (COVID-19) caused by four imported cases in Hebei Province, and to provide a scientific basis for the prevention and control of the disease. Methods Descriptive epidemiological methods were used to analyze the epidemiological characteristics of four community-transmitted COVID-19 outbreaks reported in the China Disease Control and Prevention Information System from January 1, 2020 to December 31, 2021 in Hebei Province. Results From January 1, 2020 to December 31, 2021, four community-transmitted COVID-19 outbreaks caused by imported COVID-19 occurred in Hebei Province, respectively related of Hubei (Wuhan) Province, Beijing Xinfadi market, Overseas cases and Ejina banner of Inner Mongolia Autonomous Region. Total of 1 656 cases (1 420 confirmed cases and 236 asymptomatic cases) were reported, including 375 cases in phase A (From January 22 to April 16, 2020), and phase B (from June 14 to June 24, 2020) 27 cases were reported, with 1 116 cases reported in the third phase (Phase C, January 2 to February 14, 2021), and 138 cases reported in the fourth phase (Phase D, October 23 to November 14, 2021). The 1 656 cases were distributed in 104 counties of 11 districts (100.00%), accounting for 60.46% of the total number of counties in the province. There were 743 male cases and 913 female cases, with a male to female ratio of 0.81:1. The minimum age was 13 days, the maximum age was 94 years old, and the average age (median) was 40.3 years old. The incidence was 64.01% between 30 and 70 years old. Farmers and students accounted for 54.41% and 14.73% of the total cases respectively. Of the 1 420 confirmed cases, 312 were mild cases, accounting for 21.97%;Common type 1 095 cases (77.11%);There was 1 severe case and 12 critical cases, accounting for 0.07% and 0.85%, respectively. 7 patients died from 61.0 to 85.7 years old. The mean (median) time from onset to diagnosis was 1.9 days (0-31 days), and the mean (median) time of hospital stay was 15 days (1.5-56 days). Conclusions Four times in Hebei province COVID-19 outbreak in scale, duration, population, epidemic and type of input source, there are some certain difference, but there are some common characteristics, such as the outbreak occurs mainly during the legal holidays or after starting and spreading epidemic area is mainly in rural areas, aggregation epidemic is the main mode of transmission, etc. To this end, special efforts should be made to strengthen the management of people moving around during holidays, and strengthen the implementation of epidemic prevention and control measures in places with high concentration of people. To prevent the spread of the epidemic, we will step up surveillance in rural areas, farmers' markets, medical workers and other key areas and groups, and ensure early detection and timely response.Copyright © 2022 China Tropical Medicine. All rights reserved.

2.
China Tropical Medicine ; 22(8):780-785, 2022.
Article in Chinese | Scopus | ID: covidwho-2164282

ABSTRACT

Objective To analyze the epidemiological characteristics of community transmission of the coronavirus disease 2019 (COVID-19) caused by four imported cases in Hebei Province, and to provide a scientific basis for the prevention and control of the disease. Methods Descriptive epidemiological methods were used to analyze the epidemiological characteristics of four community-transmitted COVID-19 outbreaks reported in the China Disease Control and Prevention Information System from January 1, 2020 to December 31, 2021 in Hebei Province. Results From January 1, 2020 to December 31, 2021, four community-transmitted COVID-19 outbreaks caused by imported COVID-19 occurred in Hebei Province, respectively related of Hubei (Wuhan) Province, Beijing Xinfadi market, Overseas cases and Ejina banner of Inner Mongolia Autonomous Region. Total of 1 656 cases (1 420 confirmed cases and 236 asymptomatic cases) were reported, including 375 cases in phase A (From January 22 to April 16, 2020), and phase B (from June 14 to June 24, 2020) 27 cases were reported, with 1 116 cases reported in the third phase (Phase C, January 2 to February 14, 2021), and 138 cases reported in the fourth phase (Phase D, October 23 to November 14, 2021). The 1 656 cases were distributed in 104 counties of 11 districts (100.00%), accounting for 60.46% of the total number of counties in the province. There were 743 male cases and 913 female cases, with a male to female ratio of 0.81∶1. The minimum age was 13 days, the maximum age was 94 years old, and the average age (median) was 40.3 years old. The incidence was 64.01% between 30 and 70 years old. Farmers and students accounted for 54.41% and 14.73% of the total cases respectively. Of the 1 420 confirmed cases, 312 were mild cases, accounting for 21.97%;Common type 1 095 cases (77.11%);There was 1 severe case and 12 critical cases, accounting for 0.07% and 0.85%, respectively. 7 patients died from 61.0 to 85.7 years old. The mean (median) time from onset to diagnosis was 1.9 days (0-31 days), and the mean (median) time of hospital stay was 15 days (1.5-56 days). Conclusions Four times in Hebei province COVID-19 outbreak in scale, duration, population, epidemic and type of input source, there are some certain difference, but there are some common characteristics, such as the outbreak occurs mainly during the legal holidays or after starting and spreading epidemic area is mainly in rural areas, aggregation epidemic is the main mode of transmission, etc. To this end, special efforts should be made to strengthen the management of people moving around during holidays, and strengthen the implementation of epidemic prevention and control measures in places with high concentration of people. To prevent the spread of the epidemic, we will step up surveillance in rural areas, farmers′ markets, medical workers and other key areas and groups, and ensure early detection and timely response. © 2022 China Tropical Medicine. All rights reserved.

3.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210308, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-1992465

ABSTRACT

During infectious disease outbreaks, inference of summary statistics characterizing transmission is essential for planning interventions. An important metric is the time-dependent reproduction number (Rt), which represents the expected number of secondary cases generated by each infected individual over the course of their infectious period. The value of Rt varies during an outbreak due to factors such as varying population immunity and changes to interventions, including those that affect individuals' contact networks. While it is possible to estimate a single population-wide Rt, this may belie differences in transmission between subgroups within the population. Here, we explore the effects of this heterogeneity on Rt estimates. Specifically, we consider two groups of infected hosts: those infected outside the local population (imported cases), and those infected locally (local cases). We use a Bayesian approach to estimate Rt, made available for others to use via an online tool, that accounts for differences in the onwards transmission risk from individuals in these groups. Using COVID-19 data from different regions worldwide, we show that different assumptions about the relative transmission risk between imported and local cases affect Rt estimates significantly, with implications for interventions. This highlights the need to collect data during outbreaks describing heterogeneities in transmission between different infected hosts, and to account for these heterogeneities in methods used to estimate Rt. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks , Humans , Reproduction , Time
4.
Infect Drug Resist ; 15: 3295-3307, 2022.
Article in English | MEDLINE | ID: covidwho-1917084

ABSTRACT

Purpose: At present, it has been found that managing patients with a redetected positive RNA test after recovery from foreign-imported coronavirus disease 2019 (COVID-19) cases in China is challenging. The purpose of the current study was to describe the clinical characteristics of these patients. Methods: This retrospective cohort study included 137 COVID-19 patients who were discharged from the Xi'an Public Health Center from 28 July 2020 to 31 December 2021. We compared the clinical characteristics between positive retest patients and non-positive retest patients. Results: 137 COVID-19 patients entered our study, 27 (19.7%) cases of COVID-19 with a redetected positive RNA test by the end of the follow-up period. Fever [(n = 31 (22.6%)], cough [n = 26 (18.9%)] and sore throat [n = 20 (14.5%)] were the most common initial symptoms among the foreign-imported COVID-19 patients, and there were almost no significant differences in initial symptoms between positive retest patients and non-positive retest patients. The positive retest patients had a higher lymphocyte count (p = 0.031) and lymphocyte percentage (p = 0.007) during readmission. There were generally no significant differences in other routine blood test findings, IgG and IgM antibody responses, between positive retest patients and non-positive retest patients, or in positive retest patients over time (before, during, or after positive patient detection). After readmission, positive retest patients displayed fewer symptoms or no obvious disease progression and more sustained remission by CT imaging. Conclusion: Our findings revealed that the clinical characteristics at the time of initial diagnosis were not closely related to redetected positive RNA tests after recovery from foreign-imported COVID-19 cases. Positive retest patients had virtually no symptoms and displayed no obvious disease progression during readmission. These findings provide important information and clinical evidence for the effective management of foreign-imported COVID-19 patients during their convalescent phase.

5.
Biomed Environ Sci ; 35(5): 402-411, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1893036

ABSTRACT

Objective: The scientific community knows little about the long-term influence of coronavirus disease 2019 (COVID-19) on olfactory dysfunction (OD). With the COVID-19 pandemic ongoing worldwide, the risk of imported cases remains high. In China, it is necessary to understand OD in imported cases. Methods: A prospective follow-up design was adopted. A total of 11 self-reported patients with COVID-19 and OD from Xi'an No. 8 Hospital were followed between August 19, 2021, and December 12, 2021. Demographics, clinical characteristics, laboratory and radiological findings, and treatment outcomes were analyzed at admission. We surveyed the patients via telephone for recurrence and sequelae at the 1-, 6-, and 12-month follow-up. Results: Eleven patients with OD were enrolled; of these, 54.5% (6/11) had hyposmia and 45.5% (5/11) had anosmia. 63.6% (7/11) reported OD before or on the day of admission as their initial symptom; of these, 42.9% (3/7) described OD as the only symptom. All patients in the study received combined treatment with traditional Chinese medicine and Western medicine, and 72.7% (8/11) had partially or fully recovered at discharge. In terms of OD recovery at the 12-month follow-up, 45.5% (5/11) reported at least one sequela, 81.8% (9/11) had recovered completely, 18.2% (2/11) had recovered partially, and there were no recurrent cases. Conclusions: Our data revealed that OD frequently presented as the initial or even the only symptom among imported cases. Most OD improvements occurred in the first 2 weeks after onset, and patients with COVID-19 and OD had favorable treatment outcomes during long-term follow-up. A better understanding of the pathogenesis and appropriate treatment of OD is needed to guide clinicians in the care of these patients.


Subject(s)
COVID-19 , Olfaction Disorders , COVID-19/complications , Follow-Up Studies , Humans , Olfaction Disorders/epidemiology , Olfaction Disorders/etiology , Pandemics , Prospective Studies , SARS-CoV-2
6.
Infect Genet Evol ; 100: 105270, 2022 06.
Article in English | MEDLINE | ID: covidwho-1740048

ABSTRACT

OBJECTIVES: Although COVID-19 has been controlled in China, the risk of invasion of imported cases remains. We aimed to characterize the impact of the number of imported cases and the implementation of first-level emergency response (FLER) policy. METHODS: A SCQIHR switching model was constructed and verified by the complete phased data of COVID-19 in Chongqing in 2020. Then it was used to investigate the impact of the number of imported cases and the timing of FLER. Lastly, it was evaluated by three actual scenarios in Chongqing in 2021. RESULTS: The proposed model can fit the multidimensional time series well. After the implementation of FLER, the mean effective reproduction number, contact rate and misdetection rate were decreased significantly, but the quarantine rate for close contacts and isolation rate for non-hospitalized infectious cases were increased significantly. The peaks of quarantined close contacts and hospitalized infectious cases increased linearly with the increase of the number of imported cases and the lag of FLER time, which was verified by three actual scenarios in Chongqing in 2021. CONCLUSIONS: These findings can provide guidance for local public health policy-making and allocation of medical resources, reduce the impact of COVID-19 on the local population.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , China/epidemiology , Humans , Quarantine , SARS-CoV-2
7.
Front Public Health ; 10: 743248, 2022.
Article in English | MEDLINE | ID: covidwho-1731860

ABSTRACT

BACKGROUND: To limit the spread of COVID-19 due to imported cases, Burkina Faso has set up quarantine measures for arriving passengers. We aimed to determine the incidence and predictors of imported cases of COVID-19 in Burkina Faso. METHODS: A prospective cohort study was performed using data from passengers arriving at the airport from April 9 to August 31, 2020. The data was extracted from the District Health Information Software 2 (DHIS2) platform. Cox regression was used to identify predictors of imported cases of COVID-19. RESULTS: Among 6,332 travelers who arrived in the study period, 173 imported cases (2.7%) were recorded. The incidence rate was 1.9 cases per 1,000 traveler-days (95%CI: 1.6-2.2 per 1,000). Passengers arriving in April (Adjusted hazard ratio [aHR] = 3.56; 95%CI: 1.62-7.81) and May (aHR = 1.92; 95% CI: 1.18-3.12) were more at risk of being tested positive compared to those arriving in August, as well as, passengers presenting with one symptom (aHR = 3.71; 95% CI: 1.63-8.43) and at least two symptoms (aHR = 10.82; 95% CI: 5.24-22,30) compared to asymptomatic travelers. CONCLUSIONS: The incidence of imported cases was relatively low in Burkina Faso between April and August 2020. The period of travel and the presence of symptoms at arrival predicted the risk of being tested positive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is essential in the context of the high circulation of virus variants worldwide and the low local capacity to perform genotyping tests to strengthen the surveillance and screening capacities at the points of entry into the country.


Subject(s)
COVID-19 , Burkina Faso/epidemiology , COVID-19/epidemiology , Humans , Incidence , Prospective Studies , SARS-CoV-2
8.
Int J Environ Res Public Health ; 17(9)2020 05 09.
Article in English | MEDLINE | ID: covidwho-1725605

ABSTRACT

In the early stages of the 2019 novel coronavirus disease (COVID-19) pandemic, containment of disease importation from epidemic areas was essential for outbreak control. This study is based on publicly accessible data on confirmed COVID-19 cases in Taiwan extracted from the Taiwan Centers for Disease Control website. We analysed the characteristics, infection source, symptom presentation, and route of identification of the 321 imported cases that were identified from 21 January to 6 April 2020. They were mostly returned Taiwanese citizens who had travelled to one or more of 37 countries for tourism, business, work, or study. Half of these cases developed symptoms before arrival, most of the remainder developed symptoms 1-13 days (mean 4.0 days) after arrival, and 3.4% never developed symptoms. Three-quarters of the cases had respiratory symptoms, 44.9% had fever, 13.1% lost smell or taste, and 7.2% had diarrhoea. Body temperature and symptom screening at airports identified 32.7% of the cases. Of the remainder, 27.7% were identified during home quarantining, 16.2% were identified via contact tracing, and 23.4% were reported by hospitals. Under the strict enforcement of these measures, the incidence of locally acquired COVID-19 cases in Taiwan remains sporadic. In conclusion, proactive border control measures are effective for preventing community transmission of this disease.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/isolation & purification , Disease Transmission, Infectious/prevention & control , Fever of Unknown Origin/diagnosis , Mass Screening/methods , Pneumonia, Viral , Travel , Airports , Asymptomatic Infections , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks/prevention & control , Humans , Incidence , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Population Surveillance , Quarantine , SARS-CoV-2 , Sentinel Surveillance , Social Isolation , Taiwan/epidemiology , Travel Medicine
9.
J Infect Dev Ctries ; 15(12): 1792-1800, 2021 12 31.
Article in English | MEDLINE | ID: covidwho-1638107

ABSTRACT

INTRODUCTION: The novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), etiological agent of coronavirus disease 2019 (COVID-19) was first reported in China in December 2019 and spread worldwide. As of March 6th, 2021, there have been 116,670,105 million confirmed cases globally including 2,592,085 deaths. COVID-19 cases have been reported in 219 countries and territories, creating global panic. Mozambique has witnessed the evolution of COVID-19 epidemic associated with the weakness of health system, mostly in terms of laboratory diagnosis capacity, concerns on compliance to effective public health measures including physical distancing, use of masks in crowded indoor areas, hand hygiene, isolation and quarantine of people. METHODOLOGY: The data included in this study were collected from published articles regarding COVID-19 imported cases and severity in Africa, especially in Mozambique. Additionally, official documents of COVID-19 epidemiology from Minister of Health and National Institute of Health of Mozambique from 22nd of March 2020 to 1st of August 2020 were included. RESULTS: The SARS-CoV-2 strains imported mainly from South Africa and European countries might have been playing an important role on COVID-19 epidemic evolution in Mozambique. CONCLUSIONS: These circulating strains in the country, might be similar enough to the strains found in other countries, yet the genomic characterization is needed particularly during the phase of borders reopening through understanding the source of infections and guiding the implementation of containment and mitigation measures in the country.


Subject(s)
COVID-19/epidemiology , Communicable Diseases, Imported/epidemiology , Africa/epidemiology , Female , Global Health , Humans , Male , Mozambique/epidemiology , Pandemics , Patient Acuity , SARS-CoV-2
10.
BMC Infect Dis ; 22(1): 59, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1634635

ABSTRACT

BACKGROUND: In March 2020, the WHO declared the novel coronavirus outbreak a global pandemic. While great success in coronavirus disease 2019 (COVID-19) control has been achieved in China, imported cases have become a major challenge. This study aimed to describe the epidemiological and clinical characteristics of imported COVID-19 cases and to assess the effectiveness of screening strategies in Beijing, China. METHODS: This retrospective study included all imported cases transferred to Beijing Ditan Hospital from 29 February to 20 March 2020 who were screened by both chest computed tomography (CT) and reverse-transcriptase-polymerase chain reaction (RT-PCR) at the initial presentation. Demographic, clinical and laboratory data, in addition to chest CT imaging, were collected and analysed. RESULTS: In total, 2545 cases were included, among which 71 (2.8%) were finally diagnosed with laboratory-confirmed COVID-19. The majority 63 (88.7%) were from Europe. The most common initial symptoms were cough and fever, which accounted for 49.3% and 42.3%, respectively. Only four cases (5.6%) had lymphocytopenia, and thirteen cases (18.3%) demonstrated elevated levels of C-reactive protein (CRP). All cases had normal serum levels of procalcitonin (PCT). At initial presentation, among the 71 confirmed cases, 59 (83.1%) had a positive RT-PCR assay, and 35 (49.3%) had a positive chest CT. Twelve (16.9%) had a negative RT-PCR assay but a positive chest CT. CONCLUSIONS: A combination of RT-PCR and chest CT is an effective strategy for the screening of imported COVID-19 cases. Our findings provide important information and clinical evidence about the infection control of imported COVID-19 cases.


Subject(s)
COVID-19 , Beijing/epidemiology , China/epidemiology , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
11.
Math Biosci Eng ; 19(2): 1388-1410, 2022 01.
Article in English | MEDLINE | ID: covidwho-1593802

ABSTRACT

The large-scale infection of COVID-19 has led to a significant impact on lives and economies around the world and has had considerable impact on global public health. Social distancing, mask wearing and contact tracing have contributed to containing or at least mitigating the outbreak, but how public awareness influences the effectiveness and efficiency of such approaches remains unclear. In this study, we developed a discrete compartment dynamic model to mimic and explore how media reporting and the strengthening containment strategies can help curb the spread of COVID-19 using Shaanxi Province, China, as a case study. The targeted model is parameterized based on multi-source data, including the cumulative number of confirmed cases, recovered individuals, the daily number of media-reporting items and the imported cases from the rest of China outside Shaanxi from January 23 to April 11, 2020. We carried out a sensitivity analysis to investigate the effect of media reporting and imported cases on transmission. The results revealed that reducing the intensity of media reporting, which would result in a significant increasing of the contact rate and a sizable decreasing of the contact-tracing rate, could aggravate the outbreak severity by increasing the cumulative number of confirmed cases. It also demonstrated that diminishing the imported cases could alleviate the outbreak severity by reducing the length of the epidemic and the final size of the confirmed cases; conversely, delaying implementation of lockdown strategies could prolong the length of the epidemic and magnify the final size. These findings suggest that strengthening media coverage and timely implementing of lockdown measures can significantly reduce infection.


Subject(s)
COVID-19 , Epidemics , China/epidemiology , Communicable Disease Control , Humans , SARS-CoV-2
12.
J R Soc Interface ; 18(185): 20210569, 2021 12.
Article in English | MEDLINE | ID: covidwho-1575238

ABSTRACT

Inferring the transmission potential of an infectious disease during low-incidence periods following epidemic waves is crucial for preparedness. In such periods, scarce data may hinder existing inference methods, blurring early-warning signals essential for discriminating between the likelihoods of resurgence versus elimination. Advanced insight into whether elevating caseloads (requiring swift community-wide interventions) or local elimination (allowing controls to be relaxed or refocussed on case-importation) might occur can separate decisive from ineffective policy. By generalizing and fusing recent approaches, we propose a novel early-warning framework that maximizes the information extracted from low-incidence data to robustly infer the chances of sustained local transmission or elimination in real time, at any scale of investigation (assuming sufficiently good surveillance). Applying this framework, we decipher hidden disease-transmission signals in prolonged low-incidence COVID-19 data from New Zealand, Hong Kong and Victoria, Australia. We uncover how timely interventions associate with averting resurgent waves, support official elimination declarations and evidence the effectiveness of the rapid, adaptive COVID-19 responses employed in these regions.


Subject(s)
COVID-19 , Communicable Diseases , Australia , Humans , New Zealand , SARS-CoV-2
13.
Math Biosci Eng ; 19(1): 1-33, 2022 01.
Article in English | MEDLINE | ID: covidwho-1526887

ABSTRACT

Since the outbreak of COVID-19 in Wuhan, China in December 2019, it has spread quickly and become a global pandemic. While the epidemic has been contained well in China due to unprecedented public health interventions, it is still raging or not yet been restrained in some neighboring countries. Chinese government adopted a strict policy of immigration diversion in major entry ports, and it makes Suifenhe port in Heilongjiang Province undertook more importing population. It is essential to understand how imported cases and other key factors of screening affect the epidemic rebound and its mitigation in Heilongjiang Province. Thus we proposed a time switching dynamical system to explore and mimic the disease transmission in three time stages considering importation and control. Cross validation of parameter estimations was carried out to improve the credibility of estimations by fitting the model with eight time series of cumulative numbers simultaneous. Simulation of the dynamics shows that illegal imported cases and imperfect protection in hospitals are the main reasons for the second epidemic wave, the actual border control intensities in the province are relatively effective in early stage. However, a long-term border closure may cause a paradox phenomenon such that it is much harder to restrain the epidemic. Hence it is essential to design an effective border reopening strategy for long-term border control by balancing the limited resources on hotel rooms for quarantine and hospital beds. Our results can be helpful for public health to design border control strategies to suppress COVID-19 transmission.


Subject(s)
COVID-19 , China/epidemiology , Emigration and Immigration , Humans , Research Design , SARS-CoV-2
14.
Ann Transl Med ; 9(20): 1584, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1503010

ABSTRACT

BACKGROUND: Due to the ongoing pandemic of coronavirus disease 2019 (COVID-19) in foreign countries and regions, many overseas people arrive in China by air. Currently, most of the new cases of COVID-19 were imported from overseas. Here, we evaluated the predictive effect of the level of blood albumin (ALB) and serum prealbumin (PA) level in overseas-imported cases on the conversion of mild COVID-19 to moderate and its value in guiding nutritional support for these travelers. METHODS: We retrospectively analyzed serum levels of ALB and PA of 193 patients with imported COVID-19 admitted to the Shanghai Public Health Clinical Center at the time of admission on April 8, 2020. RESULTS: Since the first overseas-imported case was admitted to Shanghai on March 5, 2020, 195 overseas-imported cases have been treated in the Shanghai Public Health Clinical Center. The disease was mild or moderate. A total of 193 patients (111 males and 82 females) entered our analysis and the disease was moderate in 108 patients and mild in 85 patients. Patients were aged 6 to 66 years (mean: 28 years). There was a strong negative correlation between the proportion of moderate type and ALB (P=0.0073); thus, patients with a lower level of ALB were more likely to be diagnosed with moderate type. The correlation coefficient was close to 0 in the scatter plot, indicating that there was no linear correlation between PA and the diagnosis of moderate type (P>0.05). There was a strong negative correlation between age and ALB level (P<0.001), while length of hospital stay did not show a linear correlation with ALB or PB levels (both P>0.05). Therefore, older patients had lower levels of ALB and were more likely to develop moderate COVID-19. CONCLUSIONS: The serum ALB level can be an early predictive indicator for the conversion of mild COVID-19 to moderate in cases imported overseas and may guide nutritional support.

15.
J Travel Med ; 28(7)2021 10 11.
Article in English | MEDLINE | ID: covidwho-1470160

ABSTRACT

BACKGROUND: We present a novel approach for exiting coronavirus disease 2019 (COVID-19) lockdowns using a 'risk scorecard' to prioritize activities to resume whilst allowing safe reopening. METHODS: We modelled cases generated in the community/week, incorporating parameters for social distancing, contact tracing and imported cases. We set thresholds for cases and analysed the effect of varying parameters. An online tool to facilitate country-specific use including the modification of parameters (https://sshsphdemos.shinyapps.io/covid_riskbudget/) enables visualization of effects of parameter changes and trade-offs. Local outbreak investigation data from Singapore illustrate this. RESULTS: Setting a threshold of 0.9 mean number of secondary cases arising from a case to keep R < 1, we showed that opening all activities excluding high-risk ones (e.g. nightclubs) allows cases to remain within threshold; while opening high-risk activities would exceed the threshold and result in escalating cases. An 80% reduction in imported cases per week (141 to 29) reduced steady-state cases by 30% (295 to 205). One-off surges in cases (due to superspreading) had no effect on the steady state if the R remains <1. Increasing the effectiveness of contact tracing (probability of a community case being isolated when infectious) by 33% (0.6 to 0.8) reduced cases by 22% (295 to 231). Cases grew exponentially if the product of the mean number of secondary cases arising from a case and (1-probability of case being isolated) was >1. CONCLUSIONS: Countries can utilize a 'risk scorecard' to balance relaxations for travel and domestic activity depending on factors that reduce disease impact, including hospital/ICU capacity, contact tracing, quarantine and vaccination. The tool enabled visualization of the combinations of imported cases and activity levels on the case numbers and the trade-offs required. For vaccination, a reduction factor should be applied both for likelihood of an infected case being present and a close contact getting infected.


Subject(s)
COVID-19 , Communicable Disease Control , Contact Tracing , Humans , Quarantine , SARS-CoV-2
16.
Risk Manag Healthc Policy ; 14: 3955-3963, 2021.
Article in English | MEDLINE | ID: covidwho-1443916

ABSTRACT

OBJECTIVE: This study aimed to analyze the distribution characteristics and influencing factors for the interval between entering mainland China and the diagnosis of imported COVID-19 cases in Guangdong province, in order to provide valuable experience for global pandemic in prevention and control. METHODS: We collected publicly reported data between March 1 and June 2, 2020. Univariate and multivariate regression analyses were performed to identify the significant associated factors with the interval between entering mainland China and diagnosis of imported COVID-19 cases. RESULTS: As of June 2, 2020, a total of 200 imported cases were reported in Guangdong province. The average interval time was 4.25 days with a median of 2 days, the interval time of 68% cases was between 1 and 3 days. The multivariate model results show that the three following factors were critical influencing factors: nationality was foreign nationality (P = 0.037), results of initial nucleic acid detection were negative (P = 0.000) and the interval between entering mainland China and the detection of positive results (T) exceeded two days (P = 0.008). CONCLUSION: The results suggested that all travelers and returning resident should be taken strict sampling and testing, and isolation measures, improved the accuracy of the initial nucleic acid test results, and the detection efficiency and shortening the interval between entering mainland China and detection of positive results.

17.
J Infect Dis ; 224(5): 783-787, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1393268

ABSTRACT

Estimating the time-varying reproductive number, Rt, is critical for monitoring transmissibility of an infectious disease. The impact of imported cases on the estimation is rarely explored. We developed a model to estimate separately the Rt for local cases and imported cases, accounting for imperfect contact tracing of cases. We applied this framework to data on coronavirus disease 2019 outbreaks in Hong Kong. The estimated Rt for local cases rose above 1 in late March 2020, which was undetected by other commonly used methods. When imported cases account for a considerable proportion of all cases, their impact on estimating Rt is critical.


Subject(s)
COVID-19/epidemiology , Contact Tracing/methods , Disease Outbreaks , Hong Kong/epidemiology , Humans , SARS-CoV-2/pathogenicity
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(1): 68-73, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1266777

ABSTRACT

:To predict the epidemiological trend of coronavirus disease 2019 (COVID-19) by mathematical modeling based on the population mobility and the epidemic prevention and control measures. : As of February 8,2020,the information of 151 confirmed cases in Yueqing,Zhejiang province were obtained,including patients' infection process,population mobility between Yueqing and Wuhan,etc. To simulate and predict the development trend of COVID-19 in Yueqing, the study established two-stage mathematical models,integrating the population mobility data with the date of symptom appearance of confirmed cases and the transmission dynamics of imported and local cases. : It was found that in the early stage of the pandemic,the number of daily imported cases from Wuhan (using the date of symptom appearance) was positively associated with the number of population travelling from Wuhan to Yueqing on the same day and 6 and 9 days before that. The study predicted that the final outbreak size in Yueqing would be 170 according to the number of imported cases estimated by consulting the population number travelling from Wuhan to Yueqing and the susceptible-exposed-infectious-recovered (SEIR) model; while the number would be 165 if using the reported daily number of imported cases. These estimates were close to the 170,the actual monitoring number of cases in Yueqing as of April 27,2020. : The two-stage modeling approach used in this study can accurately predict COVID-19 epidemiological trend.


Subject(s)
COVID-19 , China/epidemiology , Disease Outbreaks , Humans , Models, Theoretical , Pandemics , SARS-CoV-2
19.
Epidemiologia (Basel) ; 2(2): 198-206, 2021 May 29.
Article in English | MEDLINE | ID: covidwho-1259454

ABSTRACT

This review aims to map the spread of the virus from Iran to the Middle East and the rest of the world and to help better understand the key trends that occurred during COVID-19 from this epidemic center. We performed a literature review which was undertaken from 16 June to 22 November 2020. We reviewed the available evidence on imported cases from Iran, in the electronic databases PubMed and Google Scholar, as well as gray literature. It is shown that 125 cases were imported from Iran, out of which most of the imported cases were asymptomatic, and PCR testing was the most common method of detection. It was also found that more than half of the imported cases were not quarantined or isolated at home. The review revealed that many countries, especially the Middle East had imported cases from Iran. The big gap between the date of arrival at the airport and the date of diagnosis emphasizes the importance of early detection and quarantine measures, to stop the spread of the virus.

20.
Int J Gen Med ; 14: 2069-2078, 2021.
Article in English | MEDLINE | ID: covidwho-1256167

ABSTRACT

BACKGROUND: Effective management of foreign-imported COVID-19 cases is a new and great challenge for China. Our study focused on the foreign-imported COVID-19 cases to provide detailed data for insights into the prevention, early diagnosis, treatment and control of imported COVID-19. METHODS: For this observational and retrospective study, we investigated the clinical characteristics of imported COVID-19 cases that were confirmed by real-time RT-PCR in the Xi'an Public Health Center from 29 March 2020 to 31 August 2020. RESULTS: Of the 79 patients with COVID-19, 19 (24.1%) had exposure to confirmed COVID-19 patients, 15 (19.0%) had exposure to suspicious COVID-19 patients, and 45 (56.9%) had an unclear history of exposure to confirmed patients. The mean age of the patients was 38 years, and 70 (88.7%) patients were male. Except for 2 severe cases, the remaining 58 (73.4%) cases displayed mild or moderate symptoms, and 19 (24.2%) infected patients were asymptomatic. Twenty-one (26.6%) patients were not diagnosed until a third or later nucleic acid test. Ten (12.7%) patients had chronic diseases. The most common manifestations of the patients were cough [18 (22.8%) cases], fever [9 (11.4%) cases] and sore throat [9 (11.4%) cases]. Forty-one (51.9%) cases showed abnormal chest CT images, To date, all patients have been discharged, and no patient has died. CONCLUSION: The imported COVID-19 cases in Xi'an were mainly young and middle-aged adults with mild or moderate symptoms who had a low rate of comorbidity, showed favourable laboratory and chest CT images, and had a better prognosis. Notably, for suspected COVID-19 cases, at least three consecutive nucleic acid tests should be carried out to avoid missed detection of infected patients. Except for severe cases, high-level medical resources are not necessary in most cases.

SELECTION OF CITATIONS
SEARCH DETAIL